其中左侧为论文原文中采用的真实流场,右侧为我们复现的模型所预测的流场。可见我们得到的预测值(右边)与真实值(左边)基本一致,模型精度很好。我们复现的模型在实验结果中的 MAE 为0.0046,与原论文的结果0.0043也非常接近,验证了飞桨框架能够基于该模型实现 2D 障碍物周围层流预测的能力。心得体会百度飞桨的论文复现比赛为我们团队提供了宝贵的学习和成长机会。这个比赛不仅让我们深入了解流场预测这个细分领域,还锻炼了我们团队合作和解决问题的能力。现在回顾这次比赛,值得称赞的地方有很多。第一,飞桨官方强大的赛事组织能力,将比赛组织的规范和有序。从项目前期宣传、队伍报名、赛前讲解、赛中答疑以及结果提交一环扣一环,项目安排有序,每支队伍都清楚每个阶段该干什么。第二,比赛中,飞桨科学计算团队的技术人员提供细致答疑。比赛要求我们仔细阅读论文,并根据论文提供的参考代码使用飞桨进行复现。这个过程不仅需要我们对深度学习模型有深入的理解,也需要我们熟悉飞桨框架。作为一个新手,难免遇到各种各样的技术问题,每次找飞桨技术人员,总能得到耐心细致的解答。除此之外,官方还会定期跟踪复现的进展情况,有问题立即为选手解决问题。第三,参加飞桨的论文复现比赛也为我们打开了更广阔的视野。通过此次比赛,我们有机会接触到 AI for Science 这个领域很多优秀论文。在复现实践的过程中,我们深入研究了这些论文的方法和技术,加深了我们对这个领域的理解,了解到了学术界的最新进展和应用。最后,我要衷心感谢百度飞桨团队所有组织者和工作人员。他们的辛勤付出和专业支持使得这次比赛得以顺利进行。也要特别感谢陆林、汪璐、孔德天这些一起参加比赛的师兄弟,感谢我们团队中每一位成员的努力和奉献。未来,我们将继续保持学习的态度,不断探索和创新,争取为推动该领域的发展做出贡献。