DBPN超分辨模型精度无法复现
蚌埠二中cyx 发布于2020-08 浏览:1671 回复:0
0
收藏
最后编辑于2020-08

基于paddle2.0alpha版本,我自己写了个小库,基于MMediting的结构,在尝试复现第一个模型的时候(DBPN, https://zhuanlan.zhihu.com/p/146688540),PSNR指标一直提升不上去 大概2点多个点,可以说是很差了。项目地址:https://github.com/Feynman1999/PDediting

主要代码:

class UPU(fluid.dygraph.Layer):
    """up-projection units"""

    def __init__(self,
                 num_channels,
                 filter_size,
                 stride,
                 padding):
        super(UPU, self).__init__()

        self.deconv1 = DeConvBN(num_channels, num_channels, filter_size, stride, padding, norm = False, act='prelu')
        self.conv1 = ConvBN(num_channels, num_channels, filter_size, stride, padding, norm = False, act='prelu')
        self.deconv2 = DeConvBN(num_channels, num_channels, filter_size, stride, padding, norm = False, act='prelu')

    def forward(self, x1):
        x2 = self.deconv1(x1)
        x3 = self.conv1(x2)
        x3 = x3 - x1
        x4 = self.deconv2(x3)
        return x4 + x2

class DPU(fluid.dygraph.Layer):
    """
        down-projection units
    """
    def __init__(self, num_channels, filter_size, stride, padding):
        super(DPU, self).__init__()
        self.conv1 = ConvBN(num_channels, num_channels, filter_size, stride, padding, norm = False, act='prelu')
        self.deconv1 = DeConvBN(num_channels, num_channels, filter_size, stride, padding, norm = False, act='prelu')
        self.conv2 = ConvBN(num_channels, num_channels, filter_size, stride, padding, norm = False, act='prelu')

    def forward(self, x1):
        x2 = self.conv1(x1)
        x3 = self.deconv1(x2)
        x3 = x3 - x1
        x4 = self.conv2(x3)
        return x4 + x2


class DBPN(Model):
    """DBPN network structure.
    Paper:
    Ref repo:
    Args:
    """

    def __init__(self,
                 in_channels=3,
                 out_channels=3,
                 n_0=256,
                 n_R=64,
                 iterations_num=10,
                 upscale_factor=4):
        super(DBPN, self).__init__()

        filter_size = upscale_factor + 4
        stride = upscale_factor
        padding = 2
        self.iterations_num = iterations_num

        self.conv1 = ConvBN(in_channels, n_0, filter_size=3, stride=1, padding=1, norm=False, act='prelu')
        self.conv2 = ConvBN(n_0, n_R, filter_size=1, stride=1, padding=0, norm=False, act='prelu')
        self.UPU = UPU(n_R, filter_size, stride, padding)
        self.DPU = DPU(n_R, filter_size, stride, padding)
        self.conv3 = ConvBN(n_R*iterations_num, out_channels, 3, 1, 1, norm=False, act=None)

    def forward(self, x):  # 参数个数应该和train_batch(listofdata, listoflabel)中listofdata长度相当
        """Forward function.
        Args:
            x (Tensor): Input tensor with shape (n, c, h, w).
        Returns:
            Tensor: Forward results.
        """
        H_list = []
        x = self.conv1(x)
        x = self.conv2(x)

        for _ in range(self.iterations_num-1):
            H = self.UPU(x)
            H_list.append(H)
            x = self.DPU(H)

        H_list.append(self.UPU(x))
        x = paddle.concat(H_list, axis=1)
        x = self.conv3(x)
        return x
class ConvBN(fluid.dygraph.Layer):
    """docstring for Conv2D
        use MSRA initializer for conv
        use Normal initializer for BN
    """

    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 norm=True,
                 act='leaky_relu',
                 lrelufactor=0.02,
                 use_bias=True,
                 use_cudnn=True):
        super(ConvBN, self).__init__()

        self.conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            param_attr = fluid.ParamAttr(initializer=fluid.initializer.MSRAInitializer(uniform=False)),
            use_cudnn=use_cudnn,
            bias_attr=use_bias)
        if norm:
            self.bn = BatchNorm(
                num_filters,
                param_attr=fluid.ParamAttr(initializer=fluid.initializer.NormalInitializer(1.0, 0.02)),
                bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(0.0)),
                trainable_statistics=True)
        self.lrelufactor = lrelufactor
        self.norm = norm
        self.act = act

        if self.act == 'prelu':
            self.prelu = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(0.25)))

    def forward(self, inputs):
        conv = self.conv(inputs)
        if self.norm:
            conv = self.bn(conv)

        if self.act == 'leaky_relu':
            conv = fluid.layers.leaky_relu(conv, alpha=self.lrelufactor)
        elif self.act == 'relu':
            conv = fluid.layers.relu(conv)
        elif self.act == 'prelu':
            conv = self.prelu(conv)
        else:
            conv = conv

        return conv


class DeConvBN(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=[0, 0],
                 outpadding=[0, 0, 0, 0],
                 act='leaky_relu',
                 norm=True,
                 lrelufactor=0.02,
                 use_bias=True):
        super(DeConvBN, self).__init__()

        self._deconv = Conv2DTranspose(
            num_channels,
            num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            param_attr = fluid.ParamAttr(initializer=fluid.initializer.MSRAInitializer(uniform=False)),
            bias_attr=use_bias)
        if norm:
            self.bn = BatchNorm(
                num_filters,
                param_attr=fluid.ParamAttr(initializer=fluid.initializer.NormalInitializer(1.0, 0.02)),
                bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(0.0)),
                trainable_statistics=True)
        self.outpadding = outpadding
        self.lrelufactor = lrelufactor
        self.use_bias = use_bias
        self.norm = norm
        self.act = act

        if self.act == 'prelu':
            self.prelu = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(0.25)))

    def forward(self, inputs):
        conv = self._deconv(inputs)
        conv = fluid.layers.pad2d(conv, paddings=self.outpadding, mode='reflect')

        if self.norm:
            conv = self.bn(conv)

        if self.act == 'leaky_relu':
            conv = fluid.layers.leaky_relu(conv, alpha=self.lrelufactor)
        elif self.act == 'relu':
            conv = fluid.layers.relu(conv)
        elif self.act == 'prelu':
            conv = self.prelu(conv)
        else:
            conv = conv

        return conv
收藏
点赞
0
个赞
TOP
切换版块