开放能力
开发平台
行业应用
生态合作
开发与教学
资讯 社区 控制台
百度研究院发布2022科技趋势预测,涵盖三大层面、十大领域
发布日期:2022-01-26 02:53浏览量:716次

 序言 

在平稳前行的时代,我们用科技探寻世界的“未知性”;在充满不确定性的时代,我们用科技锚定世界的“确定性”。

当下,我们肩负的使命更倾向于后者。面对已经到来的2022年,新冠疫情持续带来影响、全球经济迎来诸多挑战,科技成为引领创新和发展的重要力量。综合技术发展态势与产业价值创造,核心技术快速演进、跨领域联结力增强、产业底座愈发坚实的人工智能,正是这样的科技力量。

首先,AI核心技术持续突破演进,融合创新愈加显著。以预训练大模型为例,知识增强、跨模态、跨语言等技术路径激活了大模型的想象空间,甚至燃起了通用人工智能的希望。

其次,在交叉学科与跨领域研究中,AI构成了科学研究与技术发展的通用变量。在量子、生物、化学等领域,“+AI”成为最令人激动的研究方向之一。

第三,在价值创造方面,AI正在推动自动驾驶、机器人、航空航天、生命健康等领域的发展,并在达成“双碳”、科技普惠等目标方面发挥重要作用。

今天,百度研究院与大家分享2022年科技趋势预测,希望在不确定的时代中,以AI为灯,照亮创新之路;以AI为桨,划起发展之舟。

——百度CTO、百度研究院院长   王海峰

1. 超大规模预训练模型呈现知识增强、跨模态统一建模、多学习方式共同演进的趋势,并逐渐实用化

大模型基于海量数据进行自监督学习,使用统一的模型和范式解决各类AI任务,打破了传统技术对于大规模标注数据的依赖,显著提升了AI模型的效果、通用性及泛化性。

预计2022年,大模型研发方向将从持续增大参数规模向实用化转变,基于知识增强、跨模态统一建模、提示学习、持续学习,结合模型蒸馏、稀疏化等技术,大模型的效果、通用性、泛化性、可解释性和运行效率将持续提升,应用门槛不断降低,从而实现在互联网、智能办公、智慧金融等场景的广泛落地。例如AIGC(AI generated content,人工智能创造内容),借助大模型的跨模态综合技术能力,可以激发创意,提升内容多样性,降低制作成本,将会实现大规模应用。

2. AI for Science新兴研究领域出现,有望带来科研范式的改变

机器学习帮助数学家发现两大猜想,以及采用机器学习、多尺度建模和高性能计算相结合的方式解决超大规模量子随机电路实时模拟问题,让人们看到了人工智能应用于科学研究,在处理数据、设计新型实验以及创建更高效的计算模型方面的巨大潜力。

正在兴起的AI for Science有望促进数据驱动和理论推演两大科研范式的深度融合。预计未来几年,AI将进一步与数学、物理、化学、材料、工程学等不同领域深度结合,在基础科学的进步中发挥更大作用。

3. 基于AI的生物计算仍将高速发展,基础研究和应用场景协同创新实现新突破

在人类社会仍处于抗击新冠病毒的背景下,生命健康产业对技术革新的诉求更加迫切。AI让基因编辑更精准快速地找到靶点, AI助力在蛋白质结构预测上取得显著突破。新冠mRNA疫苗技术的成功,则带来了基于RNA、蛋白质等大分子药物设计、疫苗研发的爆发,国际主流药厂加速mRNA技术落地。

未来,基于AI的生物计算还将在更多基础研究和应用场景上取得突破,如基于蛋白质的药物设计、合成、筛选,基于mRNA技术的抗癌药物、单克隆抗体、免疫疗法等。两者的深度融合将显著缩短药品研发周期、降低研发成本,促进精准医学和个性化诊疗。

4. 隐私计算技术备受关注,将成为数据价值释放的突破口和构建信任的基础设施

随着全球个人信息和数据安全法规的日趋健全,安全合规是促进数据价值有效释放的前提已成为业界共识。

以可信机密计算、联邦计算等为代表的隐私计算技术因从技术角度兼顾了数据安全保护和数据共享流通而备受关注。伴随着隐私计算技术性能提升、技术与合规标准互促共进、多方协同提升技术公信力,相关典型应用将在生物计算、金融分析和数据交易等场景出现。

长远来看,隐私计算技术或将推动基于密态形式的数据流通和计算成为默认选项,逐渐成为构建信任的基础设施。

5. 量子软硬一体化方案成为主流趋势,现实需求加速量子计算与各行业融合创新

预计2022年,量子芯片的设计、制备及测控技术将持续发展,量子比特数量实现规模增长,并沿着降低噪声或适应噪声两个思路寻求突破。量子软件和服务向跨平台发展,用户将在云原生量子计算平台上获得更丰富的量子后端选择,而承载量子软硬一体化方案的量子平台将逐渐显现其应用价值。

随着量子计算与智能制造、人工智能、化工医药、金融科技等领域深度融合创新,若干具有显著量子优势的实际应用解决方案将会陆续产生。政府机构、科研院所以及产业界也会更紧密地协同建造高质量量子设备、培养量子科技人才,初步打通量子计算产业链。

6. 自动驾驶技术进入无人化落地新阶段,多元“汽车机器人”不断涌现,连接技术与场景

2022年,在政策法规与技术进步的双重推动下,自动驾驶将在无人化上高歌猛进,多元“汽车机器人”为代表的汽车形态迅猛发展。

通过乘用车、公交车、干线物流、仓储配送、矿山港口特殊作业、零售、环卫等丰富的场景应用,多元“汽车机器人”将更广泛为用户提供服务,为客户创造价值,进而逐步实现稳健的商业收益,促进科技的发展和社会的进步。

7. AI技术与航天科技融合创新,推动深空探测迈向智能化的新阶段

深空探测承载了人类对宇宙和自身的好奇与遐想。实现月球和行星驻留,开展科学探测与资源开发利用为主体的计划,在遥远和未知环境下开展深空探索,对探测器的自主性需求日益强烈。

工程机械自动化领域已实现了24小时连续无人挖掘作业的实际工程场景落地,相关的自主环境感知、运动规划等AI算法,未来也将使探测器具备自主避障和决策、机械臂灵活自主作业等功能。此外,在航天器故障检测和修复、构造数字孪生仿真实验室、深空大数据探测分析等方面,AI技术也有望发挥重要的支撑作用。

 
8. “社交距离”加速人机共生,支撑虚实结合与智能交互技术快速融入生产生活

新冠疫情为人们的交流设置了“社交距离”,数字技术的发展让我们可以缩短这一距离,加速了人与数字人、机器人的共生。虚实结合与智能交互的未来世界,离我们不再遥远。

支撑这一变化的,是视觉、语音、自然语言处理、XR等AI技术在跨模态理解与生成、持续学习等方面的不断进步,以及融合硬件、网络、计算、生态系统平台、内容等形成的交叉技术支撑体系。

随着相关技术的加速融合创新,以及交叉技术支撑体系的成熟,将涌现出更多面向产业和消费场景的虚实结合与智能交互产品,进而推动数字经济和实体经济深度融合,丰富人们的生产生活体验。

9. 绿色低碳更多纳入AI蓝图,助力实现碳达峰碳中和目标

随着AI技术加速与各行各业融合创新,数据中心和大规模AI计算实现了重要的经济和社会价值,但其能耗和对环境的影响不容忽视,亟需发展对环境更友好的“绿色AI”技术,降低模型训练和使用的能耗。

未来几年,“绿色AI”相关技术将持续蓬勃发展,围绕高能效的架构设计、训练和推理策略、数据利用等构建体系,形成兼顾性能和能耗的评价标准;算力更高、能耗较低的AI芯片将不断涌现;领军AI企业构建集约化的大算力和大模型,改善下游性能,降低整体能耗成本;政策也将鼓励建设绿色低碳的数据中心、推出用AI技术提升基础设施能效比等举措。

10. AI更加包容普惠,价值创造导向使中小企业、弱势群体的需求得到更多关注

普惠AI不仅关乎广大的AI从业者,也关乎更广泛的AI技术受益者。

以深度学习框架为核心的开源平台已大大降低AI技术的开发门槛,公共数据集、大模型底座、区域性智算中心等将进一步发展,助力中小企业实现降本增效、激发创新活力。全民AI培养体系也将逐步构建,促进传统行业人员再就业和AI科普教育。

AI的福祉还应惠及社会各群体,随着政策引导和可持续发展的ESG理念推动,企业关注点将转向价值创造,AI服务商将加强对老人、儿童等弱势群体需求的关注,开发相应的普惠AI服务和产品,让每个人都能享受到数字技术的便利。

 

技术能力
语音技术
文字识别
人脸与人体
图像技术
语言与知识
视频技术
AR与VR
数据智能
场景方案
部署方案
行业应用
智能教育
智能医疗
智能零售
智能工业
企业服务
智能政务
信息服务
智能园区