驾驶行为分析
接口描述
对于输入的一张车载驾驶员监控图片(可正常解码,且长宽比适宜),识别图像中是否有人体,若检测到至少1个人体,将目标最大的人体作为驾驶员,进一步识别驾驶员的属性行为,可识别使用手机、抽烟、未系安全带、双手离开方向盘、视线未朝前方、未佩戴口罩、闭眼、打哈欠、低头9种典型行为姿态。
注:若图像中检测到多个大小相当的人体,默认取画面中右侧最大的人体作为驾驶员;针对香港、海外地区的右舵车,可通过请求参数里的wheel_location字段,指定将左侧最大的人体作为驾驶员。
图片质量要求:
1、服务只适用于车载监控场景,普通室内外监控场景,若要识别使用手机、抽烟等行为属性,请使用人体检测与属性识别服务。
2、车内摄像头硬件选型无特殊要求,分辨率建议720p以上,但更低分辨率的图片也能识别,只是效果可能有差异。
3、车内摄像头部署方案建议:尽可能拍全驾驶员的身体,并充分考虑背光、角度、方向盘遮挡等因素。
4、服务适用于夜间红外监控图片,识别效果跟可见光图片相比可能略微有差异。
5、图片主体内容清晰可见,模糊、驾驶员遮挡严重、光线暗等情况下,识别效果肯定不理想。
示例图参考:
在线调试
您可以在 示例代码中心 中调试该接口,可进行签名验证、查看在线调用的请求内容和返回结果、示例代码的自动生成。
请求说明
请求示例
HTTP 方法:POST
请求URL:https://aip.baidubce.com/rest/2.0/image-classify/v1/driver_behavior
URL参数:
参数 | 值 |
---|---|
access_token | 通过API Key和Secret Key获取的access_token,参考“Access Token获取” |
Header如下:
参数 | 值 |
---|---|
Content-Type | application/x-www-form-urlencoded |
Body中放置请求参数,参数详情如下:
请求参数
参数 | 是否必选 | 类型 | 可选值范围 | 说明 |
---|---|---|---|---|
image | 是 | string | - | 图像数据,base64编码后进行urlencode,要求base64编码和urlencode后大小不超过4M。图片的base64编码是不包含图片头的,如(data:image/jpg;base64, ),支持图片格式:jpg、bmp、png,最短边至少50px,最长边最大4096px |
type | 否 | string | smoke,cellphone, not_buckling_up, both_hands_leaving_wheel, not_facing_front |
识别的属性行为类别,英文逗号分隔,默认所有属性都识别; smoke //吸烟, cellphone //打手机 , not_buckling_up // 未系安全带, both_hands_leaving_wheel // 双手离开方向盘, not_facing_front // 视角未看前方, no_face_mask // 未正确佩戴口罩, yawning // 打哈欠, eyes_closed // 闭眼, head_lowered // 低头 |
wheel_location | 否 | string | 0,1 | 默认值"1",表示左舵车(普遍适用于中国大陆地区,若图像中检测到多个大小相当的人体,默认取画面中右侧最大的人体作为驾驶员); "0"表示右舵车(适用于香港等地区,若图像中检测到多个大小相当的人体,则取画面中左侧最大的人体作为驾驶员); 其他输入值视为非法输入,直接使用默认值 |
请求代码示例
提示一:使用示例代码前,请记得替换其中的示例Token、图片地址或Base64信息。
提示二:部分语言依赖的类或库,请在代码注释中查看下载地址。
驾驶行为分析
curl -i -k 'https://aip.baidubce.com/rest/2.0/image-classify/v1/driver_behavior?access_token=【调用鉴权接口获取的token】' --data 'image=【图片Base64编码,需UrlEncode】' -H 'Content-Type:application/x-www-form-urlencoded'
<?php
/**
* 发起http post请求(REST API), 并获取REST请求的结果
* @param string $url
* @param string $param
* @return - http response body if succeeds, else false.
*/
function request_post($url = '', $param = '')
{
if (empty($url) || empty($param)) {
return false;
}
$postUrl = $url;
$curlPost = $param;
// 初始化curl
$curl = curl_init();
curl_setopt($curl, CURLOPT_URL, $postUrl);
curl_setopt($curl, CURLOPT_HEADER, 0);
// 要求结果为字符串且输出到屏幕上
curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($curl, CURLOPT_SSL_VERIFYPEER, false);
// post提交方式
curl_setopt($curl, CURLOPT_POST, 1);
curl_setopt($curl, CURLOPT_POSTFIELDS, $curlPost);
// 运行curl
$data = curl_exec($curl);
curl_close($curl);
return $data;
}
$token = '[调用鉴权接口获取的token]';
$url = 'https://aip.baidubce.com/rest/2.0/image-classify/v1/driver_behavior?access_token=' . $token;
$img = file_get_contents('[本地文件路径]');
$img = base64_encode($img);
$bodys = array(
'image' => $img
);
$res = request_post($url, $bodys);
var_dump($res);
package com.baidu.ai.aip;
import com.baidu.ai.aip.utils.Base64Util;
import com.baidu.ai.aip.utils.FileUtil;
import com.baidu.ai.aip.utils.HttpUtil;
import java.net.URLEncoder;
/**
* 驾驶行为分析
*/
public class DriverBehavior {
/**
* 重要提示代码中所需工具类
* FileUtil,Base64Util,HttpUtil,GsonUtils请从
* https://ai.baidu.com/file/658A35ABAB2D404FBF903F64D47C1F72
* https://ai.baidu.com/file/C8D81F3301E24D2892968F09AE1AD6E2
* https://ai.baidu.com/file/544D677F5D4E4F17B4122FBD60DB82B3
* https://ai.baidu.com/file/470B3ACCA3FE43788B5A963BF0B625F3
* 下载
*/
public static String driver_behavior() {
// 请求url
String url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/driver_behavior";
try {
// 本地文件路径
String filePath = "[本地文件路径]";
byte[] imgData = FileUtil.readFileByBytes(filePath);
String imgStr = Base64Util.encode(imgData);
String imgParam = URLEncoder.encode(imgStr, "UTF-8");
String param = "image=" + imgParam;
// 注意这里仅为了简化编码每一次请求都去获取access_token,线上环境access_token有过期时间, 客户端可自行缓存,过期后重新获取。
String accessToken = "[调用鉴权接口获取的token]";
String result = HttpUtil.post(url, accessToken, param);
System.out.println(result);
return result;
} catch (Exception e) {
e.printStackTrace();
}
return null;
}
public static void main(String[] args) {
DriverBehavior.driver_behavior();
}
}
# encoding:utf-8
import requests
import base64
'''
驾驶行为分析
'''
request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/driver_behavior"
# 二进制方式打开图片文件
f = open('[本地文件]', 'rb')
img = base64.b64encode(f.read())
params = {"image":img}
access_token = '[调用鉴权接口获取的token]'
request_url = request_url + "?access_token=" + access_token
headers = {'content-type': 'application/x-www-form-urlencoded'}
response = requests.post(request_url, data=params, headers=headers)
if response:
print (response.json())
#include <iostream>
#include <curl/curl.h>
// libcurl库下载链接:https://curl.haxx.se/download.html
// jsoncpp库下载链接:https://github.com/open-source-parsers/jsoncpp/
const static std::string request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/driver_behavior";
static std::string driver_behavior_result;
/**
* curl发送http请求调用的回调函数,回调函数中对返回的json格式的body进行了解析,解析结果储存在全局的静态变量当中
* @param 参数定义见libcurl文档
* @return 返回值定义见libcurl文档
*/
static size_t callback(void *ptr, size_t size, size_t nmemb, void *stream) {
// 获取到的body存放在ptr中,先将其转换为string格式
driver_behavior_result = std::string((char *) ptr, size * nmemb);
return size * nmemb;
}
/**
* 驾驶行为分析
* @return 调用成功返回0,发生错误返回其他错误码
*/
int driver_behavior(std::string &json_result, const std::string &access_token) {
std::string url = request_url + "?access_token=" + access_token;
CURL *curl = NULL;
CURLcode result_code;
int is_success;
curl = curl_easy_init();
if (curl) {
curl_easy_setopt(curl, CURLOPT_URL, url.data());
curl_easy_setopt(curl, CURLOPT_POST, 1);
curl_httppost *post = NULL;
curl_httppost *last = NULL;
curl_formadd(&post, &last, CURLFORM_COPYNAME, "image", CURLFORM_COPYCONTENTS, "【base64_img】", CURLFORM_END);
curl_easy_setopt(curl, CURLOPT_HTTPPOST, post);
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, callback);
result_code = curl_easy_perform(curl);
if (result_code != CURLE_OK) {
fprintf(stderr, "curl_easy_perform() failed: %s\n",
curl_easy_strerror(result_code));
is_success = 1;
return is_success;
}
json_result = driver_behavior_result;
curl_easy_cleanup(curl);
is_success = 0;
} else {
fprintf(stderr, "curl_easy_init() failed.");
is_success = 1;
}
return is_success;
}
using System;
using System.IO;
using System.Net;
using System.Text;
using System.Web;
namespace com.baidu.ai
{
public class DriverBehavior
{
// 驾驶行为分析
public static string driver_behavior()
{
string token = "[调用鉴权接口获取的token]";
string host = "https://aip.baidubce.com/rest/2.0/image-classify/v1/driver_behavior?access_token=" + token;
Encoding encoding = Encoding.Default;
HttpWebRequest request = (HttpWebRequest)WebRequest.Create(host);
request.Method = "post";
request.KeepAlive = true;
// 图片的base64编码
string base64 = getFileBase64("[本地图片文件]");
String str = "image=" + HttpUtility.UrlEncode(base64);
byte[] buffer = encoding.GetBytes(str);
request.ContentLength = buffer.Length;
request.GetRequestStream().Write(buffer, 0, buffer.Length);
HttpWebResponse response = (HttpWebResponse)request.GetResponse();
StreamReader reader = new StreamReader(response.GetResponseStream(), Encoding.Default);
string result = reader.ReadToEnd();
Console.WriteLine("驾驶行为分析:");
Console.WriteLine(result);
return result;
}
public static String getFileBase64(String fileName) {
FileStream filestream = new FileStream(fileName, FileMode.Open);
byte[] arr = new byte[filestream.Length];
filestream.Read(arr, 0, (int)filestream.Length);
string baser64 = Convert.ToBase64String(arr);
filestream.Close();
return baser64;
}
}
}
返回说明
返回参数
字段 | 是否必选 | 类型 | 说明 |
---|---|---|---|
person_num | 是 | uint64 | 检测到的总人数(包括驾驶员和乘客),0代表未监测到驾驶员 |
driver_num | 是 | uint64 | 检测到的驾驶员数目。若大于1,则综合考虑人体框尺寸和位置,选取最佳驾驶员目标框进行属性分析,默认取画面中右侧最大的人体作为驾驶员(普遍适用于中国大陆地区) |
person_info | 是 | object[] | 驾驶员的属性行为信息;若未检测到驾驶员,则该项为[] |
+location | 否 | object | 检测出驾驶员的位置 |
++left | 否 | int | 检测区域在原图的左起开始位置 |
++top | 否 | int | 检测区域在原图的上起开始位置 |
++width | 否 | int | 检测区域宽度 |
++height | 否 | int | 检测区域高度 |
+attributes | 否 | object | 驾驶员属性行为内容 |
++smoke | 否 | object | 吸烟 |
+++score | 否 | float | 对应概率分数 |
+++threshold | 否 | float | 建议阈值,仅作为参考,实际应用中根据测试情况选取合适的score阈值即可 |
++cellphone | 否 | object | 使用手机 |
+++score | 否 | float | 对应概率分数 |
+++threshold | 否 | float | 建议阈值,仅作为参考,实际应用中根据测试情况选取合适的score阈值即可 |
++not_buckling_up | 否 | object | 未系安全带 |
+++score | 否 | float | 对应概率分数 |
+++threshold | 否 | float | 建议阈值,仅作为参考,实际应用中根据测试情况选取合适的score阈值即可 |
++both_hands_leaving_wheel | 否 | object | 双手离开方向盘 |
+++score | 否 | float | 对应概率分数 |
+++threshold | 否 | float | 建议阈值,仅作为参考,实际应用中根据测试情况选取合适的score阈值即可 |
++not_facing_front | 否 | object | 视角未朝前方 |
+++score | 否 | float | 对应概率分数 |
+++threshold | 否 | float | 建议阈值,仅作为参考,实际应用中根据测试情况选取合适的score阈值即可 |
++no_face_mask | 否 | object | 未正确佩戴口罩,包含戴了口罩、但口鼻外露这类未戴好的情况 |
+++score | 否 | float | 对应概率分数 |
+++threshold | 否 | float | 建议阈值,仅作为参考,实际应用中根据测试情况选取合适的score阈值即可 |
++yawning | 否 | object | 打哈欠,实际应用时,可结合闭眼综合判断疲劳,避免普通张嘴、说话等情况下被误判 |
+++score | 否 | float | 对应概率分数 |
+++threshold | 否 | float | 建议阈值,仅作为参考,实际应用中根据测试情况选取合适的score阈值即可 |
++eyes_closed | 否 | object | 闭眼, 实际应用时,可结合打哈欠综合判断疲劳,避免正常眨眼等情况下被误判 |
+++score | 否 | float | 对应概率分数 |
+++threshold | 否 | float | 建议阈值,仅作为参考,实际应用中根据测试情况选取合适的score阈值即可 |
++head_lowered | 否 | object | 低头,实际应用时,可结合闭眼、视角未朝前方综合判断分心、疲劳,避免单一属性引起误判 |
+++score | 否 | float | 对应概率分数 |
+++threshold | 否 | float | 建议阈值,仅作为参考,实际应用中根据测试情况选取合适的score阈值即可 |
返回示例
{
"person_num": 1,
"person_info": [
{
"attributes": {
"cellphone": {
"threshold": 0.76,
"score": 0.089325942099094
},
"yawning": {
"threshold": 0.66,
"score": 0.0007511890726164
},
"not_buckling_up": {
"threshold": 0.58,
"score": 0.81095975637436
},
"no_face_mask": {
"threshold": 0.72,
"score": 0.99875915050507
},
"both_hands_leaving_wheel": {
"threshold": 0.3,
"score": 0.9014720916748
},
"eyes_closed": {
"threshold": 0.1,
"score": 0.090511165559292
},
"head_lowered": {
"threshold": 0.58,
"score": 0.11450858414173
},
"smoke": {
"threshold": 0.25,
"score": 0.026156177744269
},
"not_facing_front": {
"threshold": 0.53,
"score": 0.68074524402618
}
},
"location": {
"width": 856,
"top": 419,
"score": 0.90945136547089,
"left": 464,
"height": 626
}
}
],
"log_id": 2320165720061799596
}