资讯 社区 文档
技术能力
语音技术
文字识别
人脸与人体
图像技术
语言与知识
视频技术

果蔬识别

接口描述

该请求用于识别果蔬类食材,即对于输入的一张图片(可正常解码,且长宽比适宜),输出图片中的果蔬食材结果。

在线调试

您可以在 示例代码中心 中调试该接口,可进行签名验证、查看在线调用的请求内容和返回结果、示例代码的自动生成。

请求说明

请求示例

HTTP 方法:POST

请求URL: https://aip.baidubce.com/rest/2.0/image-classify/v1/classify/ingredient

URL参数:

参数
access_token 通过API Key和Secret Key获取的access_token,参考“Access Token获取

Header如下:

参数
Content-Type application/x-www-form-urlencoded

Body中放置请求参数,参数详情如下:

请求参数

参数 是否必选 类型 可选值范围 说明
image 和url二选一 string 图像数据,base64编码,要求base64编码后大小不超过4M,最短边至少15px,最长边最大4096px,支持jpg/png/bmp格式。注意:图片需要base64编码、去掉编码头(data:image/jpg;base64,)后,再进行urlencode。
url 和image二选一 string 图片完整URL,URL长度不超过1024字节,URL对应的图片base64编码后大小不超过4M,最短边至少15px,最长边最大4096px,支持jpg/png/bmp格式,当image字段存在时url字段失效。
top_num unit32 返回预测得分top结果数,如果为空或小于等于0默认为5;如果大于20默认20

请求代码示例

提示一:使用示例代码前,请记得替换其中的示例Token、图片地址或Base64信息。

提示二:部分语言依赖的类或库,请在代码注释中查看下载地址。

curl -i -k 'https://aip.baidubce.com/rest/2.0/image-classify/v1/classify/ingredient?access_token=【调用鉴权接口获取的token】' --data 'image=【图片Base64编码,需UrlEncode】' -H 'Content-Type:application/x-www-form-urlencoded'
<?php
/**
 * 发起http post请求(REST API), 并获取REST请求的结果
 * @param string $url
 * @param string $param
 * @return - http response body if succeeds, else false.
 */
function request_post($url = '', $param = '')
{
    if (empty($url) || empty($param)) {
        return false;
    }

    $postUrl = $url;
    $curlPost = $param;
    // 初始化curl
    $curl = curl_init();
    curl_setopt($curl, CURLOPT_URL, $postUrl);
    curl_setopt($curl, CURLOPT_HEADER, 0);
    // 要求结果为字符串且输出到屏幕上
    curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);
    curl_setopt($curl, CURLOPT_SSL_VERIFYPEER, false);
    // post提交方式
    curl_setopt($curl, CURLOPT_POST, 1);
    curl_setopt($curl, CURLOPT_POSTFIELDS, $curlPost);
    // 运行curl
    $data = curl_exec($curl);
    curl_close($curl);

    return $data;
}

$token = '[调用鉴权接口获取的token]';
$url = 'https://aip.baidubce.com/rest/2.0/image-classify/v1/classify/ingredient?access_token=' . $token;
$img = file_get_contents('[本地文件路径]');
$img = base64_encode($img);
$bodys = array(
    'image' => $img
);
$res = request_post($url, $bodys);

var_dump($res);
package com.baidu.ai.aip;

import com.baidu.ai.aip.utils.Base64Util;
import com.baidu.ai.aip.utils.FileUtil;
import com.baidu.ai.aip.utils.HttpUtil;

import java.net.URLEncoder;

/**
* 细粒度图像识别
*/
public class Ingredient {

    /**
    * 重要提示代码中所需工具类
    * FileUtil,Base64Util,HttpUtil,GsonUtils请从
    * https://ai.baidu.com/file/658A35ABAB2D404FBF903F64D47C1F72
    * https://ai.baidu.com/file/C8D81F3301E24D2892968F09AE1AD6E2
    * https://ai.baidu.com/file/544D677F5D4E4F17B4122FBD60DB82B3
    * https://ai.baidu.com/file/470B3ACCA3FE43788B5A963BF0B625F3
    * 下载
    */
    public static String ingredient() {
        // 请求url
        String url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/classify/ingredient";
        try {
            // 本地文件路径
            String filePath = "[本地文件路径]";
            byte[] imgData = FileUtil.readFileByBytes(filePath);
            String imgStr = Base64Util.encode(imgData);
            String imgParam = URLEncoder.encode(imgStr, "UTF-8");

            String param = "image=" + imgParam;

            // 注意这里仅为了简化编码每一次请求都去获取access_token,线上环境access_token有过期时间, 客户端可自行缓存,过期后重新获取。
            String accessToken = "[调用鉴权接口获取的token]";

            String result = HttpUtil.post(url, accessToken, param);
            System.out.println(result);
            return result;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return null;
    }

    public static void main(String[] args) {
        Ingredient.ingredient();
    }
}
# encoding:utf-8

import requests
import base64

'''
细粒度图像识别
'''

request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/classify/ingredient"
# 二进制方式打开图片文件
f = open('[本地文件]', 'rb')
img = base64.b64encode(f.read())

params = {"image":img}
access_token = '[调用鉴权接口获取的token]'
request_url = request_url + "?access_token=" + access_token
headers = {'content-type': 'application/x-www-form-urlencoded'}
response = requests.post(request_url, data=params, headers=headers)
if response:
    print (response.json())
#include <iostream>
#include <curl/curl.h>

// libcurl库下载链接:https://curl.haxx.se/download.html
// jsoncpp库下载链接:https://github.com/open-source-parsers/jsoncpp/
const static std::string request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/classify/ingredient";
static std::string ingredient_result;
/**
 * curl发送http请求调用的回调函数,回调函数中对返回的json格式的body进行了解析,解析结果储存在全局的静态变量当中
 * @param 参数定义见libcurl文档
 * @return 返回值定义见libcurl文档
 */
static size_t callback(void *ptr, size_t size, size_t nmemb, void *stream) {
    // 获取到的body存放在ptr中,先将其转换为string格式
    ingredient_result = std::string((char *) ptr, size * nmemb);
    return size * nmemb;
}
/**
 * 细粒度图像识别
 * @return 调用成功返回0,发生错误返回其他错误码
 */
int ingredient(std::string &json_result, const std::string &access_token) {
    std::string url = request_url + "?access_token=" + access_token;
    CURL *curl = NULL;
    CURLcode result_code;
    int is_success;
    curl = curl_easy_init();
    if (curl) {
        curl_easy_setopt(curl, CURLOPT_URL, url.data());
        curl_easy_setopt(curl, CURLOPT_POST, 1);
        curl_httppost *post = NULL;
        curl_httppost *last = NULL;
        curl_formadd(&post, &last, CURLFORM_COPYNAME, "image", CURLFORM_COPYCONTENTS, "【base64_img】", CURLFORM_END);

        curl_easy_setopt(curl, CURLOPT_HTTPPOST, post);
        curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, callback);
        result_code = curl_easy_perform(curl);
        if (result_code != CURLE_OK) {
            fprintf(stderr, "curl_easy_perform() failed: %s\n",
                    curl_easy_strerror(result_code));
            is_success = 1;
            return is_success;
        }
        json_result = ingredient_result;
        curl_easy_cleanup(curl);
        is_success = 0;
    } else {
        fprintf(stderr, "curl_easy_init() failed.");
        is_success = 1;
    }
    return is_success;
}
using System;
using System.IO;
using System.Net;
using System.Text;
using System.Web;

namespace com.baidu.ai
{
    public class Ingredient
    {
        // 细粒度图像识别
        public static string ingredient()
        {
            string token = "[调用鉴权接口获取的token]";
            string host = "https://aip.baidubce.com/rest/2.0/image-classify/v1/classify/ingredient?access_token=" + token;
            Encoding encoding = Encoding.Default;
            HttpWebRequest request = (HttpWebRequest)WebRequest.Create(host);
            request.Method = "post";
            request.KeepAlive = true;
            // 图片的base64编码
            string base64 = getFileBase64("[本地图片文件]");
            String str = "image=" + HttpUtility.UrlEncode(base64);
            byte[] buffer = encoding.GetBytes(str);
            request.ContentLength = buffer.Length;
            request.GetRequestStream().Write(buffer, 0, buffer.Length);
            HttpWebResponse response = (HttpWebResponse)request.GetResponse();
            StreamReader reader = new StreamReader(response.GetResponseStream(), Encoding.Default);
            string result = reader.ReadToEnd();
            Console.WriteLine("细粒度图像识别:");
            Console.WriteLine(result);
            return result;
        }

        public static String getFileBase64(String fileName) {
            FileStream filestream = new FileStream(fileName, FileMode.Open);
            byte[] arr = new byte[filestream.Length];
            filestream.Read(arr, 0, (int)filestream.Length);
            string baser64 = Convert.ToBase64String(arr);
            filestream.Close();
            return baser64;
        }
    }
}

返回说明

返回参数

字段 是否必选 类型 说明
log_id uint64 唯一的log id,用于问题定位
result object() 识别结果
result_num unit32 识别结果数
+name string 图像中的食材名称
+score double 得分,0-1

返回示例

HTTP/1.1 200 OK
x-bce-request-id: 73c4e74c-3101-4a00-bf44-fe246959c05e
Cache-Control: no-cache
Server: BWS
Date: Tue, 18 Oct 2016 02:21:01 GMT
Content-Type: application/json;charset=UTF-8
{
    "log_id": 1091287364,
    "result_num": 20,
    "result": [
        {
            "name": "非果蔬食材",
            "score": 0.99999988079071
        },
        {
            "name": "油菜",
            "score": 1.1175458780599e-8
        },
        {
            "name": "蛇果",
            "score": 7.2776291659693e-9
        },
        {
            "name": "国光苹果",
            "score": 5.6971951600815e-9
        },
        {
            "name": "海枣",
            "score": 4.2508210285064e-9
        },
        {
            "name": "琼瑶浆葡萄",
            "score": 4.1451895249622e-9
        },
        {
            "name": "京锐号辣椒",
            "score": 3.9915102334476e-9
        },
        {
            "name": "冬瓜",
            "score": 3.3611948779821e-9
        },
        {
            "name": "长江豆",
            "score": 2.9944848822794e-9
        },
        {
            "name": "黑加仑",
            "score": 2.7750137743254e-9
        },
        {
            "name": "面包果",
            "score": 2.3357531464541e-9
        },
        {
            "name": "椰子",
            "score": 1.9741890344704e-9
        },
        {
            "name": "美人瓜",
            "score": 1.9319581490151e-9
        },
        {
            "name": "莲藕",
            "score": 1.759222323372e-9
        },
        {
            "name": "黑奥林",
            "score": 1.7266311713726e-9
        },
        {
            "name": "芥菜",
            "score": 1.6180708994895e-9
        },
        {
            "name": "样芹菜",
            "score": 1.5472728653876e-9
        },
        {
            "name": "篙巴",
            "score": 1.4084827748562e-9
        },
        {
            "name": "花生",
            "score": 1.3972580870103e-9
        },
        {
            "name": "魁绿猕猴桃",
            "score": 1.3920842256709e-9
        }
    ]
}
上一篇
logo识别
下一篇
图像多主体检测