Linux-CPP-SDK
简介
本文档介绍Linux版飞桨开源模型SDK的使用方法。
快速开始
文件结构说明
.EasyEdge-Linux-m43157-b97741-x86
├── RES # 模型文件资源文件夹,可替换为其他模型
│ ├── conf.json
│ ├── label_list.txt
│ ├── model
│ ├── params
│ └── infer_cfg.json
├── ReadMe.txt
├── cpp # C++ SDK
│ └── baidu_easyedge_linux_cpp_x86_64_CPU.Generic_gcc5.4_v1.4.0_20220325.tar.gz
└── python # Python SDK
├── BaiduAI_EasyEdge_SDK-1.2.8-cp35-cp35m-linux_x86_64.whl
├── BaiduAI_EasyEdge_SDK-1.2.8-cp36-cp36m-linux_x86_64.whl
├── BaiduAI_EasyEdge_SDK-1.2.8-cp37-cp37m-linux_x86_64.whl
├── infer_demo
│ ├── demo_x86_cpu.py
│ └── demo_serving.py
├── tensor_demo
│ └── demo_x86_cpu.py
C++ SDK文件结构如下:
baidu_easyedge_linux_cpp_x86_64_CPU.Generic_gcc5.4_v1.4.0_20220325.tar.gz
├── ReadMe.txt
├── bin # 可直接运行的二进制文件
├── include # 二次开发用的头文件
├── lib # 二次开发用的所依赖的库
├── src # 二次开发用的示例工程
└── thirdparty # 第三方依赖
安装依赖
预编译二进制依赖:
- gcc: 5.4 以上( GLIBCXX_3.4.22) ,gcc / glibc版本请以实际SDK ldd的结果为准
二次开发依赖:
- cmake: 3.0 以上
测试Demo
模型资源文件默认已经打包在开发者下载的SDK包中,请先将tar包整体拷贝到具体运行的设备中,再解压缩使用。
SDK中已经包含预先编译的二进制,可直接运行
bin/easyedge_image_inference 预测图像
./easyedge_image_inference {模型RES文件夹} {测试图片路径}
运行效果示例:
> ./easyedge_image_inference ../../../../RES 2.jpeg
2019-02-13 16:46:12,659 INFO [EasyEdge] [easyedge.cpp:34] 140606189016192 Baidu EasyEdge Linux Development Kit 0.2.1(20190213)
2019-02-13 16:46:14,083 INFO [EasyEdge] [paddlev2_edge_predictor.cpp:60] 140606189016192 Allocate graph success.
2019-02-13 16:46:14,326 DEBUG [EasyEdge] [paddlev2_edge_predictor.cpp:143] 140606189016192 Inference costs 168 ms
1, 1:txt_frame, p:0.994905 loc: 0.168161, 0.153654, 0.920856, 0.779621
Done
bin/easyedge_video_inference: 预测视频流
./easyedge_video_inference {模型RES文件夹} {video_type} {video_src}
其中video_type支持三种:
/**
* @brief 输入源类型
*/
enum class SourceType {
kVideoFile = 1, // 本地视频文件
kCameraId = 2, // 摄像头的index
kNetworkStream = 3, // 网络视频流,支持rtsp/rtmp/hls/http等常见协议
};
video_src 即为文件路径(1) 或者本地摄像头id(2)或网络视频流地址(3)如:
- 本地视频文件:
./easyedge_video_inference ../RES 1 ~/my_video_file.mp4
- 本地摄像头:
./easyedge_video_inference ../RES 2 1
# /dev/video1 - IP视频流:
./easyedge_video_inference ../RES 3 rtmp://192.168.x.x:8733/live/src
bin/easyedge_serving:启动HTTP预测服务
./easyedge_serving {模型RES文件夹路径}
启动后,日志中会显示
HTTP is now serving at 0.0.0.0:24401
字样,此时,开发者可以打开浏览器,http://{设备ip}:24401
,选择图片来进行测试。
同时,可以调用HTTP接口来访问服务,具体参考下文接口说明。
SDK二次开发使用说明
使用该方式,将运行库嵌入到开发者的程序当中。
基础流程
src
文件夹中包含完整可编译的cmake工程实例,建议开发者先行了解cmake工程基本知识
❗注意,请优先参考SDK中自带的Demo工程的使用流程和说明。遇到错误,请优先参考文件中的注释、解释、日志说明。
// step 1: 配置运行参数
EdgePredictorConfig config;
config.model_dir = {模型文件目录};
// step 2: 创建并初始化Predictor;这这里选择合适的引擎
auto predictor = global_controller()->CreateEdgePredictor(config);
// step 3-1: 预测图像
auto img = cv::imread({图片路径});
std::vector<EdgeResultData> results;
predictor->infer(img, results);
// step 3-2: 预测视频
std::vector<EdgeResultData> results;
FrameTensor frame_tensor;
VideoConfig video_config;
video_config.source_type = static_cast<SourceType>(video_type); // source_type 定义参考头文件 easyedge_video.h
video_config.source_value = video_src;
/*
... more video_configs, 根据需要配置video_config的各选项
*/
auto video_decoding = CreateVideoDecoding(video_config);
while (video_decoding->next(frame_tensor) == EDGE_OK) {
results.clear();
if (frame_tensor.is_needed) {
predictor->infer(frame_tensor.frame, results);
render(frame_tensor.frame, results, predictor->model_info().kind);
}
//video_decoding->display(frame_tensor); // 显示当前frame,需在video_config中开启配置
//video_decoding->save(frame_tensor); // 存储当前frame到视频,需在video_config中开启配置
}
若需自定义library search path或者gcc路径,修改CMakeList.txt即可。
SDK参数配置
SDK的参数通过EdgePredictorConfig::set_config
和global_controller()->set_config
配置。set_config
的所有key在easyedge_xxxx_config.h
中。其中
PREDICTOR
前缀的key是不同模型相关的配置,通过EdgePredictorConfig::set_config
设置CONTROLLER
前缀的key是整个SDK的全局配置,通过global_controller()->set_config
设置
以CPU线程数为例,KEY的说明如下:
/**
* @brief 指定使用的CPU线程数。 一般来说,线程数越接近物理核数,速度越快。
* 该参数表示在一次识别过程中,同时使用多少CPU线程。
* 若期望同时使用多个线程来同时识别多张图片,可自行创建多个predictor来使用。
* 值类型: int
* 默认值:4 (维持默认值时,ARM CPU上会自动根据大小核的情况自动调整)
*/
static constexpr auto PREDICTOR_KEY_CPU_THREADS_NUM = "PREDICTOR_KEY_CPU_THREADS_NUM";
使用方法如下:
EdgePredictorConfig config;
config.model_dir = ...;
config.set_config(params::PREDICTOR_KEY_CPU_THREADS_NUM, 8);
具体支持的运行参数可以参考开发工具包中的头文件的详细说明。
初始化
- 接口
auto predictor = global_controller()->CreateEdgePredictor(config);
predictor->init();
若返回非0,请查看输出日志排查错误原因。
预测图像
infer接口有超过11个重载函数,可以根据实际情况、参数说明自行传入需要的内容做推理
- 接口
/**
* @brief
* 通用接口
* @param image: must be BGR , HWC format (opencv default)
* @param result
* @return
*/
virtual int infer(
cv::Mat& image, std::vector<EdgeResultData>& result
) = 0;
/**
* @brief see:
* @related infer(cv::Mat & image, EdgeColorFormat origin_color_format, std::vector<EdgeResultData> &result, float threshold)
*/
virtual int infer(
std::vector<cv::Mat> &images,
EdgeColorFormat origin_color_format,
std::vector<std::vector<EdgeResultData>> &results
);
图片的格式务必为opencv默认的BGR, HWC格式。
- 返回格式
EdgeResultData
中可以获取对应的分类信息、位置信息。
struct EdgeResultData {
int index; // 分类结果的index
std::string label; // 分类结果的label
float prob; // 置信度
// 物体检测活图像分割时才有
float x1, y1, x2, y2; // (x1, y1): 左上角, (x2, y2): 右下角; 均为0~1的长宽比例值。
// 图像分割时才有
cv::Mat mask; // 0, 1 的mask
std::string mask_rle; // Run Length Encoding,游程编码的mask
};
关于矩形坐标
x1 * 图片宽度 = 检测框的左上角的横坐标
y1 * 图片高度 = 检测框的左上角的纵坐标
x2 * 图片宽度 = 检测框的右下角的横坐标
y2 * 图片高度 = 检测框的右下角的纵坐标
关于图像分割mask
cv::Mat mask为图像掩码的二维数组
{
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
}
其中1代表为目标区域,0代表非目标区域
关于图像分割mask_rle
该字段返回了mask的游程编码,解析方式可参考 http demo
以上字段可以参考demo文件中使用opencv绘制的逻辑进行解析
预测视频
SDK 提供了支持摄像头读取、视频文件和网络视频流的解析工具类VideoDecoding
,此类提供了获取视频帧数据的便利函数。通过VideoConfig
结构体可以控制视频/摄像头的解析策略、抽帧策略、分辨率调整、结果视频存储等功能。对于抽取到的视频帧可以直接作为SDK infer 接口的参数进行预测。
- 接口
classVideoDecoding
:
/**
* @brief 获取输入源的下一帧
* @param frame_tensor
* @return
*/
virtual int next(FrameTensor &frame_tensor) = 0;
/**
* @brief 显示当前frame_tensor中的视频帧
* @param frame_tensor
* @return
*/
virtual int display(const FrameTensor &frame_tensor) = 0;
/**
* @brief 将当前frame_tensor中的视频帧写为本地视频文件
* @param frame_tensor
* @return
*/
virtual int save(FrameTensor &frame_tensor) = 0;
/**
* @brief 获取视频的fps属性
* @return
*/
virtual int get_fps() = 0;
/**
* @brief 获取视频的width属性
* @return
*/
virtual int get_width() = 0;
/**
* @brief 获取视频的height属性
* @return
*/
virtual int get_height() = 0;
struct VideoConfig
/**
* @brief 视频源、抽帧策略、存储策略的设置选项
*/
struct VideoConfig {
SourceType source_type; // 输入源类型
std::string source_value; // 输入源地址,如视频文件路径、摄像头index、网络流地址
int skip_frames{0}; // 设置跳帧,每隔skip_frames帧抽取一帧,并把该抽取帧的is_needed置为true
int retrieve_all{false}; // 是否抽取所有frame以便于作为显示和存储,对于不满足skip_frames策略的frame,把所抽取帧的is_needed置为false
int input_fps{0}; // 在采取抽帧之前设置视频的fps
Resolution resolution{Resolution::kAuto}; // 采样分辨率,只对camera有效
bool enable_display{false};
std::string window_name{"EasyEdge"};
bool display_all{false}; // 是否显示所有frame,若为false,仅显示根据skip_frames抽取的frame
bool enable_save{false};
std::string save_path; // frame存储为视频文件的路径
bool save_all{false}; // 是否存储所有frame,若为false,仅存储根据skip_frames抽取的frame
std::map<std::string, std::string> conf;
};
source_type
:输入源类型,支持视频文件、摄像头、网络视频流三种,值分别为1、2、3。
source_value
: 若source_type
为视频文件,该值为指向视频文件的完整路径;若source_type
为摄像头,该值为摄像头的index,如对于/dev/video0
的摄像头,则index为0;若source_type
为网络视频流,则为该视频流的完整地址。
skip_frames
:设置跳帧,每隔skip_frames帧抽取一帧,并把该抽取帧的is_needed置为true,标记为is_needed的帧是用来做预测的帧。反之,直接跳过该帧,不经过预测。
retrieve_all
:若置该项为true,则无论是否设置跳帧,所有的帧都会被抽取返回,以作为显示或存储用。
input_fps
:用于抽帧前设置fps。
resolution
:设置摄像头采样的分辨率,其值请参考easyedge_video.h
中的定义,注意该分辨率调整仅对输入源为摄像头时有效。
conf
:高级选项。部分配置会通过该map来设置。
注意:
1.如果使用VideoConfig
的display
功能,需要自行编译带有GTK选项的opencv,默认打包的opencv不包含此项。
2.使用摄像头抽帧时,如果通过resolution
设置了分辨率调整,但是不起作用,请添加如下选项:
video_config.conf["backend"] = "2";
3.部分设备上的CSI摄像头尚未兼容,如遇到问题,可以通过工单、QQ交流群或微信交流群反馈。
具体接口调用流程,可以参考SDK中的demo_video_inference
。
TensorIn/Out 推理
TensorIn/Out 推理不会对输入数据做预处理、后处理,开发者一般使用普通推理接口即可。
/**
* @brief 不负责模型前后处理,只进行模型推理,输入Tensor序列,输出Tensor序列
* @param [in] 输入Edge Tensor序列
* @param [out] 输出Edge Tensor序列
* @experimental The api may change in the next release version
*/
virtual int forward(
const std::vector<ETensor> &feed, std::vector<ETensor> &fetch
);
日志配置
设置 EdgeLogConfig
的相关参数。具体含义参考文件中的注释说明。
EdgeLogConfig log_config;
log_config.enable_debug = true;
global_controller()->set_log_config(log_config);
http服务
1. 开启http服务
http服务的启动可直接使用bin/easyedge_serving
,或参考src/demo_serving.cpp
文件修改相关逻辑
/**
* @brief 开启一个简单的demo http服务。
* 该方法会block直到收到sigint/sigterm。
* http服务里,图片的解码运行在cpu之上,可能会降低推理速度。
* @tparam ConfigT
* @param config
* @param host
* @param port
* @param service_id service_id user parameter, uri '/get/service_id' will respond this value with 'text/plain'
* @param instance_num 实例数量,根据内存/显存/时延要求调整
* @return
*/
template<typename ConfigT>
int start_http_server(
const ConfigT &config,
const std::string &host,
int port,
const std::string &service_id,
int instance_num = 1);
2. 请求http服务
开发者可以打开浏览器,
http://{设备ip}:24401
,选择图片来进行测试。
http 请求方式一:不使用图片base64格式
URL中的get参数:
参数 | 说明 | 默认值 |
---|---|---|
threshold | 阈值过滤, 0~1 | 如不提供,则会使用模型的推荐阈值 |
HTTP POST Body即为图片的二进制内容(无需base64, 无需json)
Python请求示例
import requests
with open('./1.jpg', 'rb') as f:
img = f.read()
result = requests.post(
'http://127.0.0.1:24401/',
params={'threshold': 0.1},
data=img).json()
http 请求方法二:使用图片base64格式
HTTP方法:POST Header如下:
参数 | 值 |
---|---|
Content-Type | application/json |
Body请求填写:
- 分类网络: body 中请求示例
{
"image": "<base64数据>"
"top_num": 5
}
body中参数详情
参数 | 是否必选 | 类型 | 可选值范围 | 说明 |
---|---|---|---|---|
image | 是 | string | - | 图像数据,base64编码,要求base64图片编码后大小不超过4M,最短边至少15px,最长边最大4096px,支持jpg/png/bmp格式 注意去掉头部 |
top_num | 否 | number | - | 返回分类数量,不填该参数,则默认返回全部分类结果 |
- 检测和分割网络: Body请求示例:
{
"image": "<base64数据>"
}
body中参数详情:
参数 | 是否必选 | 类型 | 可选值范围 | 说明 |
---|---|---|---|---|
image | 是 | string | - | 图像数据,base64编码,要求base64图片编码后大小不超过4M,最短边至少15px,最长边最大4096px,支持jpg/png/bmp格式 注意去掉头部 |
threshold | 否 | number | - | 默认为推荐阈值,也可自行根据需要进行设置 |
http 返回数据
字段 | 类型说明 | 其他 |
---|---|---|
error_code | Number | 0为成功,非0参考message获得具体错误信息 |
results | Array | 内容为具体的识别结果。其中字段的具体含义请参考预测图像-返回格式 一节 |
cost_ms | Number | 预测耗时ms,不含网络交互时间 |
返回示例
{
"cost_ms": 52,
"error_code": 0,
"results": [
{
"confidence": 0.94482421875,
"index": 1,
"label": "IronMan",
"x1": 0.059185408055782318,
"x2": 0.18795496225357056,
"y1": 0.14762254059314728,
"y2": 0.52510076761245728,
"mask": "...", // 图像分割模型字段
"trackId": 0, // 目标追踪模型字段
},
]
}
关于矩形坐标
x1 * 图片宽度 = 检测框的左上角的横坐标
y1 * 图片高度 = 检测框的左上角的纵坐标
x2 * 图片宽度 = 检测框的右下角的横坐标
y2 * 图片高度 = 检测框的右下角的纵坐标
关于分割模型
其中,mask为分割模型的游程编码,解析方式可参考 http demo
模型替换说明
SDK中RES
文件夹为模型文件夹,开发者可以按要求整理自定义模型的RES
文件,运行时指定新的RES
即可。
- model: 模型网络结构文件,对应Paddle1.x的
__model__
,Paddle2.x的model.pdmodel
- params: 模型网络参数文件,对应Paddle1.x的
__params__
,Paddle2.x的model.pdiparams
- label_list.txt: label文件
- infer_cfg.json:模型推理的预处理、后处理配置文件,具体说明如下
其中,非标记【必须】的可不填
{
"version": 1,
"model_info": {
"best_threshold": 0.3, // 默认0.3
"model_kind": 1, // 【必须】 1-分类,2-检测,6-实例分割,12-追踪,14-语义分割,401-人脸,402-姿态,10001-决策
},
"pre_process": { // 【必须】
// 归一化, 预处理会把图像 (origin_img - mean) * scale
"skip_norm": false, // 默认为false, 如果设置为true,不做mean scale处理
"mean": [123, 123, 123], // 【必须】
"scale": [0.017, 0.017, 0.017], // 【必须】
"color_format": "RGB", // BGR 【必须】
"channel_order": "CHW", // HWC
// 大小相关
"resize": [300, 300], // w, h 【必须】
"rescale_mode": "keep_size", // 默认keep_size, keep_ratio, keep_ratio2, keep_raw_size, warp_affine
"max_size": 1366, // keep_ratio 用。如果没有提供,则用 resize[0]
"target_size": 800, // keep_ratio 用。如果没有提供,则用 resize[1]
"raw_size_range": [100, 10000], // keep_raw_size 用
"warp_affine_keep_res": // warp_affine模式使用,默认为false
"center_crop_size": [224, 224], // w, h, 如果需要做center_crop,则提供,否则,无需提供该字段
"padding": false,
"padding_mode": "padding_align32", // 【非必须】默认padding_align32, 其他可指定:padding_fill_size
"padding_fill_size": [416, 416], // 【非必须】仅padding_fill_size模式下需要提供, [fill_size_w, fill_size_h], 这里padding fill对齐paddle detection实现,在bottom和right方向实现补齐
"padding_fill_value": [114, 114, 114] // 【非必须】仅padding_fill_size模式下需要提供
// 其他
"letterbox": true,
},
"post_process": {
"box_normed": true, // 默认为true, 如果为false 则表示该模型的box坐标输出不是归一化的
}
}
预处理的顺序如下:(没有的流程自动略过)
- 灰度图 -> rgb图变换
- resize 尺寸变换
- center_crop
- rgb/bgr变换
- padding_fill_size
- letterbox(画个厚边框,填上黑色)
- chw/hwc变换
- 归一化:mean, scale
- padding_align32
rescale_mode说明:
- keep_size: 将图片缩放到resize指定的大小
- keep_ratio:将图片按比例缩放,长边不超过max_size,短边不超过target_size
- keep_raw_size:保持原图尺寸,但必须在raw_size_range之间
- warp_affine: 仿射变换,可以设置warp_affine_keep_res指定是否keep_res,在keep_res为false场景下,宽高通过resize字段指定
FAQ
1. 如何处理一些 undefined reference / error while loading shared libraries?
如:./easyedge_demo: error while loading shared libraries: libeasyedge.so.1: cannot open shared object file: No such file or directory
遇到该问题时,请找到具体的库的位置,设置LD_LIBRARY_PATH;或者安装缺少的库。
示例一:libverify.so.1: cannot open shared object file: No such file or directory 链接找不到libveirfy.so文件,一般可通过 export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:../../lib 解决(实际冒号后面添加的路径以libverify.so文件所在的路径为准)
示例二:libopencv_videoio.so.4.5: cannot open shared object file: No such file or directory 链接找不到libopencv_videoio.so文件,一般可通过 export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:../../thirdparty/opencv/lib 解决(实际冒号后面添加的路径以libopencv_videoio.so所在路径为准)
示例三:GLIBCXX_X.X.X not found 链接无法找到glibc版本,请确保系统gcc版本>=SDK的gcc版本。升级gcc/glibc可以百度搜索相关文献。
6. 使用libcurl请求http服务时,速度明显变慢
这是因为libcurl请求continue导致server等待数据的问题,添加空的header即可
headers = curl_slist_append(headers, "Expect:");
8. 运行二进制时,提示 libverify.so cannot open shared object file
可能cmake没有正确设置rpath, 可以设置LD_LIBRARY_PATH为sdk的lib文件夹后,再运行:
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:../lib ./easyedge_demo
9. 编译时报错:file format not recognized
可能是因为在复制SDK时文件信息丢失。请将整个压缩包复制到目标设备中,再解压缩、编译