资讯 社区 文档
技术能力
语音技术
文字识别
人脸与人体
图像技术
语言与知识
视频技术

Notebook建模示例

本文以物体检测任务类型为例,从启动Notebook到引入数据、训练模型,再到保存模型的全流程。

启动Notebook

step1:在左侧导航栏中选择开发->Notebook开发

173.png

step2:选择开发语言、AI框架、资源规格与工作目录后启动Notebook

训练物体检测模型

下载 PaddleDetection 套件

打开进入 Notebook,点击进入终端,本文以 PaddleDetection 代码库 release/2.3 分支为例,输入如下命令克隆PaddleDetection代码库并切换至release/2.3分支。整个过程需要数十秒,请耐心等待。

# gitee 国内下载比较快
git clone https://gitee.com/paddlepaddle/PaddleDetection.git -b release/2.3  
# github
# git clone https://github.com/PaddlePaddle/PaddleDetection.git -b release/2.3

安装环境

在终端环境中,安装该版本的 PaddleDetection 代码包依赖的 paddlepaddle-gpu,执行如下命令:

python -m pip install paddlepaddle-gpu==2.1.3.post101 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html

安装完成后,使用 python 或 python3 进入python解释器,输入 import paddle ,再输入 paddle.utils.run_check()如果出现 PaddlePaddle is installedsuccessfully!,说明成功安装。

准备训练数据

训练数据是模型生产的重要条件,优质的数据集可以很大程度上的提升模型训练效果,准备数据可以参考链接。本文所用的安全帽检测数据集可前往此链接进行下载:下载链接

step1:导入用户数据

目前在 Notebook 中不能直接访问您在 飞桨EasyDL 中创建的数据集,需要通过在终端输入数据所在路径。

step2:数据转换

PaddleDetection 训练所需要的数据格式与 飞桨EasyDL 默认的数据格式有所不同,所以需要利用脚本将导入的数据转为 PaddleDetection 支持的数据格式,并进行3:7切分。

PaddleDetection 默认支持的标注格式为 COCO格式,转换脚本如下:

import os
import cv2
import json
import glob
import codecs
import random
from pycocotools.coco import COCO

def parse_bml_json(json_file):
    """
    解析标注文件
    :return:
    """
    annos = json.loads(codecs.open(json_file).read())
    labels = annos['labels']
    bboxes = []
    for label in labels:
        x1 = label["x1"]
        y1 = label["y1"]
        x2 = label["x2"]
        y2 = label["y2"]
        id = label["name"]
        bboxes.append([x1, y1, x2, y2, id])
    return bboxes





def bbox_transform(box):
    """
    x1, y1, x2, y2 转为 x1, y1, width, height
    :return
    """
    box = list(map(lambda x: float(x), box))
    box[2] = box[2] - box[0]
    box[3] = box[3] - box[1]
    return box





def parse_label_list(src_data_dir, save_dir):
    """
    遍历标注文件,获取label_list
    :return:
    """
    label_list = []
    anno_files = glob.glob(src_data_dir + "*.json")
    for anno_f in anno_files:
        annos = json.loads(codecs.open(anno_f).read())
        for lb in annos["labels"]:
            label_list.append(lb["name"])
    label_list = list(set(label_list))
    with codecs.open(os.path.join(save_dir, "label_list.txt"), 'w', encoding="utf-8") as f:
        for id, label in enumerate(label_list):
            f.writelines("%s:%s\n" % (id, label))
    return len(label_list), label_list





def bml2coco(src_dir, coco_json_file):
    """
    将标注格式转为COCO标注格式
    :return:
    """
    coco_images = []
    coco_annotations = []

    image_id = 0
    anno_id = 0
    image_list = glob.glob(src_dir + "*.[jJPpBb][PpNnMm]*")
    for image_file in image_list:
        anno_f = image_file.split(".")[0] + ".json"
        if not os.path.isfile(anno_f):
            continue
        bboxes = parse_bml_json(anno_f)
        im = cv2.imread(image_file)
        h, w, _ = im.shape
        image_i = {"file_name": os.path.basename(image_file), "id": image_id, "width": w, "height": h}
        coco_images.append(image_i)
        for id, bbox in enumerate(bboxes):
            # bbox : [x1, y1, x2, y2, label_name]
            anno_i = {"image_id": image_id, "bbox": bbox_transform(bbox[:4]), 'category_id': label_list.index(bbox[4]),
                      'id': anno_id, 'area': 1.1, 'iscrowd': 0, "segmentation": None}
            anno_id += 1
            coco_annotations.append(anno_i)

        image_id += 1

    coco_categories = [{"id": id, "name": label_name} for id, label_name in enumerate(label_list)]
    coco_dict = {"info": "info", "licenses": "BMLCloud", "images": coco_images, "annotations": coco_annotations,
                 "categories": coco_categories}
    with open(coco_json_file, 'w', encoding="utf-8") as fin:
        json.dump(coco_dict, fin, ensure_ascii=False)





def split_det_origin_dataset(
        origin_file_path,
        train_file_path,
        eval_file_path,
        ratio=0.7):
    """
    按比例切分物体检测原始数据集
    :return:
    """
    coco = COCO(origin_file_path)
    img_ids = coco.getImgIds()
    items_num = len(img_ids)
    train_indexes, eval_indexes = random_split_indexes(items_num, ratio)
    train_items = [img_ids[i] for i in train_indexes]
    eval_items = [img_ids[i] for i in eval_indexes]

    dump_det_dataset(coco, train_items, train_file_path)
    dump_det_dataset(coco, eval_items, eval_file_path)

    return items_num, len(train_items), len(eval_items)





def random_split_indexes(items_num, ratio=0.7):
    """
    按比例分割整个list的index
    :return:分割后的两个index子列表
    """
    offset = round(items_num * ratio)
    full_indexes = list(range(items_num))
    random.shuffle(full_indexes)
    sub_indexes_1 = full_indexes[:offset]
    sub_indexes_2 = full_indexes[offset:]

    return sub_indexes_1, sub_indexes_2





def dump_det_dataset(coco, img_id_list, save_file_path):
    """
    物体检测数据集保存
    :return:
    """
    imgs = coco.loadImgs(img_id_list)
    img_anno_ids = coco.getAnnIds(imgIds=img_id_list, iscrowd=0)
    instances = coco.loadAnns(img_anno_ids)
    cat_ids = coco.getCatIds()
    categories = coco.loadCats(cat_ids)
    common_dict = {
        "info": coco.dataset["info"],
        "licenses": coco.dataset["licenses"],
        "categories": categories
    }
    img_dict = {
        "image_nums": len(imgs),
        "images": imgs,
        "annotations": instances
    }
    img_dict.update(common_dict)

    json_file = open(save_file_path, 'w', encoding='UTF-8')
    json.dump(img_dict, json_file)





class_nums, label_list = parse_label_list("/home/work/data/${dataset_id}/", "/home/work/PretrainedModel/")
bml2coco("/home/work/data/${dataset_id}/", "/home/work/PretrainedModel/org_data_list.json")
split_det_origin_dataset("/home/work/PretrainedModel/org_data_list.json", "/home/work/PretrainedModel/train_data_list.json", "/home/work/PretrainedModel/eval_data_list.json")

将上述脚本存放为 convert.py 代码脚本,并将脚本最后两行的 "/home/work/data/${dataset_id}/" 均替换为所指定数据集路劲,在终端中运行即可。 运行代码。

python covert.py

注意:如果报错 No module named 'pycocotools',需要通过如下命令安装相关依赖包,再运行 covert.py 代码。

pip install pycocotools

运行 covert.py 代码成功之后将在 PretrainedModel/ 文件夹下生成对应的数据文件,包括 label_list.txttrain_data_list.jsoneval_data_list.jsonorg_data_list.json

训练模型

开发者准备好训练数据和安装环境之后即可开始训练物体检测模型。

step1:在终端中打开 PaddleDetection 目录

cd /PaddleDetection

step2:修改yaml配置文件

在PaddleDetection 2.0后续版本,采用了模块解耦设计,用户可以组合配置模块实现检测器,并可自由修改覆盖各模块配置,本文以 configs/yolov3/yolov3_darknet53_270e_coco.yml 为例:

yolov3_darknet53_270e_coco.yml 主配置入口文件
coco_detection.yml 主要说明了训练数据和验证数据的路径
runtime.yml 主要说明了公共的运行参数,比如说是否使用GPU、每多少个epoch存储checkpoint等
optimizer_270e.yml 主要说明了学习率和优化器的配置。
yolov3_darknet53.yml 主要说明模型、和主干网络的情况。
yolov3_reader.yml 主要说明数据读取器配置,如batch size,并发加载子进程数等,同时包含读取后预处理操作,如resize、数据增强等等

需要修改/覆盖的参数均可写在主配置入口文件中,主要修改点为训练、验证数据集路径、运行epoch数、学习率等,修改后的主配置文件如下(注释行即为需要修改的点):

_BASE_: [
  '../datasets/coco_detection.yml',
  '../runtime.yml',
  '_base_/optimizer_270e.yml',
  '_base_/yolov3_darknet53.yml',
  '_base_/yolov3_reader.yml',
]

snapshot_epoch: 5
weights: output/yolov3_darknet53_270e_coco/model_final

# 预训练权重地址
pretrain_weights: https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams

# coco_detection.yml
num_classes: 2 #实际类别数
TrainDataset:
  !COCODataSet
    image_dir: data/${dataset_id}/   # 图片地址
    anno_path: PretrainedModel/train_data_list.json # 标注文件
    dataset_dir: /home/work/ # 数据集根目录
    data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']

EvalDataset:
  !COCODataSet
    image_dir: data/${dataset_id}/   # 图片地址
    anno_path: PretrainedModel/eval_data_list.json   # 标注文件
    dataset_dir: /home/work/   # 数据集根目录

# optimizer_270e.yml
epoch: 50 # 迭代轮数
LearningRate:
  base_lr: 0.0001 # 学习率
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
    - 30
    - 45
  - !LinearWarmup
    start_factor: 0.
    steps: 400

step3:训练模型

在终端中执行以下命令,开始模型训练。

cd /PaddleDetection/
python tools/train.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml --eval 

注意:如果报错 No module named 'lap' 和 No module named 'motmetrics' ,则需要通过如下命令安装相关依赖包,再运行 coversion.py 代码。(如果缺失其他模块,也可用类似命令下载安装)

pip install lap motmetrics

step4:模型评估

在终端中执行以下命令,开始模型评估。

python tools/eval.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml \
                     -o weights=output/yolov3_darknet53_270e_coco/model_final

运行完成输出如下结果:

176.png

step5:模型预测

在终端中执行以下命令,开始模型预测(注意修改图片路径)。

python tools/infer.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml \
                    --infer_img=/home/work/data/${task_id}/xxx.jpeg \
                    --output_dir=infer_output/ \
                    --draw_threshold=0.5 \
                    -o weights=output/yolov3_darknet53_270e_coco/model_final

step6:导出模型

在终端中执行以下命令,将最佳模型转为可以用于发布的 inference 模型

python tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml \
           --output_dir=/home/work/PretrainedModel/ \
           -o weights=output/yolov3_darknet53_270e_coco/model_final

在终端中执行以下命令,将导出模型移至 /PretrainedModel/ 目录。

mv /PretrainedModel/yolov3_darknet53_270e_coco/* /home/work/PretrainedModel/
上一篇
Notebook简介
下一篇
Http服务运行端注意事项